
Set intersection with minimal support

Jonas Seiler Cecilia Knäbchen

Abstract

Given a number 𝑛 ∈ ℕ, let 𝑘 ∈ ℕ be the minimal number,
such that one can find 𝑛 sets 𝐴1, …, 𝐴𝑛 containing some
integers from 1 to 𝑘 such that any pair of sets 𝐴𝑖 and 𝐴𝑗
share exactly |𝑖 − 𝑗| elements, that is:

𝐴𝑖 ⊆ {1, …, 𝑘}, 1 ≤ 𝑖 ≤ 𝑛
|𝐴𝑖 ∩ 𝐴𝑗| = |𝑖 − 𝑗|, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

We present optimal values for 𝑘 for 𝑛 ≤ 22 found by con"
verting the problem to a suitable integer linear programm
(ILP).
Furthermore we present upper and lower bounds for any 𝑛.

1. Introduction

For 𝑛 = 4, 𝑘 = 5 is optimal. An exemplary solution is the
following:

𝐴1 = {1, 2, 3, 4}
𝐴2 = {1, 5}
𝐴3 = {1, 2}

𝐴4 = {1, 3, 4, 5}

A₁: 1 2 3 4
A₂: 1 5
A₃: 1 2
A₄: 1 3 4 5

Exemplary solutions for all 𝑛 ≤ 22 can be found in the
relevant OEIS entry: oeis.org/A381294.

Given a solution, one can immediately get 𝑘! other solutions
by permuting the naming of the 𝑘 elements. Additionally,
one can “mirror” the sets, i.e. 𝐴1 becomes 𝐴𝑛, 𝐴2 becomes
𝐴𝑛−1 and so on, to obtain new solutions as well.

To atleast partially normalize the structure of these solu"
tions, we rename the elements in such a way, that the
columns as seen in the solution above are lexicographically
sorted. Note that is not invariant under mirroring.

The solutions listed in the OEIS are normalized with respect
to this convention.

2. Optimal Values and Integer Programming

There are two ways to go about formulating this problem as
an integer programm; First, testing if a specific combination
of 𝑛 and 𝑘 is feasible, by having binary variables 𝑥𝑖,𝑎 to
denote that set 𝐴𝑖 contains element 𝑎. A second strategy
is not to check feasibility of a specific 𝑘 but rather change
the goal to try to minimize 𝑘. This second strategy worked
better but is poorly scalable.

2.1. Feasibility of a specific (𝑛, 𝑘) pair

As mentioned above, the formulation of this problem is easy:

Variables: 𝑥𝑖,𝑎 ∈ {0, 1} ∀𝑖 ∈ {1, …, 𝑛}, 𝑎 ∈ {1, …, 𝑘}

Subject to:∑
𝑘

𝑎=1
𝑥𝑖,𝑎 · 𝑥𝑗,𝑎 = |𝑗 − 𝑖| ∀𝑖, 𝑗 ∈ {1, …, 𝑛}

where 𝑥𝑖,𝑎 denotes that set 𝐴𝑖 contains element 𝑎. Two sets
𝐴𝑖 and 𝐴𝑗 share an element 𝑎, iff 𝑥𝑖,𝑎 · 𝑥𝑗,𝑎 = 1, therefore
we can count the size of the intersection by summing over
those products.

Since our constraints are products over variables, this is
no longer a linear binary programm and rather a quadratic
binary programm. In our tests, the solving was far slower
than the formulation as a linear integer program, even
though this formulation has linear size in 𝑛 in contrast to
the exponential size of the next formulation.

2.2. Optimizing 𝑘 itself

We can also write a linear programm that does not check
for feasibility of a specific 𝑘 but rather optimize 𝑘 itself.
We do this by constructing variables 𝑆𝑋 for every subset
𝑋 ⊆ {1, …, 𝑛} that encapsulates the number of elements
that are shared by exactly the sets 𝐴𝑖 for 𝑖 ∈ 𝑋 and none
else. 𝑘 is therefore the sum of all these variables.

Variables: 𝑆𝑋 ∈ ℕ for each 𝑋 ⊆ {1, …, 𝑛}

Minimize: ∑
𝑋⊆{1,…,𝑛}

𝑆𝑋

Subject to: ∑
𝑋⊆{1,…,𝑛}

𝑖,𝑗∈𝑋

𝑆𝑋 = |𝑖 − 𝑗| ∀𝑖, 𝑗 ∈ {1, …, 𝑛}

Since there are 2𝑛 subsets of {1, …, 𝑛}, this linear programm
has exponential size in 𝑛.

With this formulation, we have found optimal values for
𝑛 ≤ 22 as can be seen in Table 1.

One interesting observation is that for each 𝑛 ≤ 22, there
exists at least one optimal solution where each elements
𝑎 ∈ {1, …, 𝑘} appears in less than 6 sets. This additional
heuristic drastically speeds up the search for new solutions
but we have been unable to prove this observation formally
and do not expect it to hold for larger 𝑛.

Code for this approach can be found on github:
github.com/HerrPixel/A381294

3. Upper bounds

We will give an upper bound by explicitely constructing a
solution for any 𝑛. A trivial construction is the following:

Consider any pair (𝑖, 𝑗) of indices 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 and their
respective sets 𝐴𝑖 and 𝐴𝑗. Add 𝑗 − 𝑖 new elements to
both sets and only those sets. Then their intersection has
the correct size. Doing this for all pairs of indices, gives a

https://oeis.org/A381294
https://github.com/HerrPixel/A381294/

correct solution, albeit not optimal for 𝑛 ≥ 3. The number
of elements used is the sum of all index differences:

∑
𝑛−1

𝑖=1
∑

𝑛

𝑗=𝑖+1
𝑗 − 𝑖 = ∑

𝑛−1

𝑖=1
∑
𝑛−𝑖

𝑗=1
𝑗 ∈ Θ(𝑛3)

This gives an asymptotic upper bound of 𝑂(𝑛3) on the
optimal 𝑘 for any 𝑛.

One might get a better bound by considering individual step
sizes instead of only pairwise indices. I.e. look at sets of the
form 𝐴1+1·𝑖, for every 0 ≤ 𝑖 ≤ 𝑛 − 1 and add an element to
each of those. Then look at sets of the form 𝐴1+2·𝑖 for every
0 ≤ 𝑖 ≤ 𝑛−1

2 and additionally 𝐴2+2·𝑖.

In general, one then has 𝑖 different congruence classes of sets
when considering step size 𝑖. For each congruence class, one
needs to add one or more elements to “fix” their intersection
size. Elements in a specific class already share elements
for each proper divisor of 𝑖, therefore the number of new
elements to be added will be

new(𝑖) = 𝑖 − ∑
𝑑 | 𝑖

new(𝑑)

This construction might lead to a better bound but will not
be optimal for 𝑛 ≥ 4.

4. Lower bounds

Consider only intersections with the last set 𝐴𝑛. Set 𝐴1
needs exactly 𝑛 − 1 elements in this intersection. Set 𝐴2
needs exactly 𝑛 − 2 elements in this intersection of which
at most one is already contained in 𝐴1 since |𝐴1 ∩ 𝐴2| = 1.
This means 𝐴2 needs 𝑛 − 3 new elements for its intersection
with 𝐴𝑛.

In general, a set 𝐴𝑖 has 𝑛 − 1 elements in
its intersection with 𝐴𝑛 of which at most
∑𝑗 = 1𝑖−1 |𝐴𝑗 ∩ 𝐴𝑖| = △ (𝑖 − 1) elements are not
new. This procedure guarantees new elements until
△ (𝑖 − 1) ≥ 𝑛 − 𝑖. One can verify that this is the case for

𝑖 < ⌊3
√

𝑛 + 1
2

⌋

We can then bound the number of elements needed from
below with:

∑
⌊3

√
𝑛

2 ⌋

𝑖=1
𝑛 − △ (𝑖) ≥ ∑

√
𝑛

𝑖=1
𝑛 − 𝑖 · (𝑖 + 1)

2

= 𝑛
√

𝑛 − 1
2

∑

√
𝑛

𝑖=1
𝑖2 + 𝑖

= 𝑛
√

𝑛 − 1
2

· 2
√

𝑛3 + 3
√

𝑛2 +
√

𝑛
6

+ Θ(𝑛)

= 𝑛
√

𝑛 − 𝑛
√

𝑛
6

+ Θ(𝑛)

∈ Θ(𝑛
√

𝑛)

One might again get a better bound by not only considering
𝐴𝑛 itself but also 𝐴𝑛−1, 𝐴𝑛−2, … and so on until there are
no more guaranteed new elements.

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

𝑘 0 0 1 2 5 9 16 24 36 50 70 91 120 150 189 231 280 336 398 468 547 630 728

Table 1: Known optimal values for 𝑘

	Set intersection with minimal support
	Abstract
	Introduction
	Optimal Values and Integer Programming
	Feasibility of a specific (n,k) pair
	Optimizing k itself

	Upper bounds
	Lower bounds

